Perfect matchings extend to Hamilton cycles in hypercubes
نویسنده
چکیده
Kreweras’ conjecture [1] asserts that any perfect matching of the hypercube Qd, d ≥ 2, can be extended to a Hamilton cycle. We prove this conjecture.
منابع مشابه
Prescribed matchings extend to Hamiltonian cycles in hypercubes with faulty edges
Ruskey and Savage asked the following question: Does every matching of Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? J. Fink showed that the question is true for every perfect matching, and solved the Kreweras’ conjecture. In this paper we consider the question in hypercubes with faulty edges. We show that every matching M of at most 2n− 1 edges can be extended to a Hamiltonian cycle of Qn ...
متن کاملMatchings of quadratic size extend to long cycles in hypercubes
Ruskey and Savage in 1993 asked whether every matching in a hypercube can be extended to a Hamiltonian cycle. A positive answer is known for perfect matchings, but the general case has been resolved only for matchings of linear size. In this paper we show that there is a quadratic function q(n) such that every matching in the n-dimensional hypercube of size at most q(n) may be extended to a cyc...
متن کاملRandom Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs
Select four perfect matchings of 2n vertices, independently at random. We find the asymptotic probability that each of the first and second matchings forms a Hamilton cycle with each of the third and fourth. This is generalised to embrace any fixed number of perfect matchings, where a prescribed set of pairs of matchings must each produce Hamilton cycles (with suitable restrictions on the presc...
متن کاملPerfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کاملMulticoloured Hamilton cycles and perfect matchings in pseudo-random graphs
Given 0 < p < 1, we prove that a pseudo-random graph G with edge density p and sufficiently large order has the following property: Consider any red/blue-colouring of the edges of G and let r denote the proportion of edges which have colour red. Then there is a Hamilton cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect matchings instead of Hamil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 97 شماره
صفحات -
تاریخ انتشار 2007